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Abstract. Explicit formulae are given for the expression of multiple-sum zeta functions 
with arbitrary exponents of the type 

and 

00 

( a ,  n :I+ . . . + a,,> + a)-’ 

where a,, a > 0, j = 1, . . . , N, in terms of Riemann and Hurwitz zeta functions. 

n,, . ,n ,v=O 

1. Introduction 

Zeta function regularisation of functional determinants is becoming a very important 
tool in mathematical physics. Let us just mention its uses in quantum field theory in 
a curved spacetime, in the mathematical calculations involved in string theory, in the 
computation of anomalies and of eff ective potentials in the quark confinement problem, 
and in the evaluation of the partition function for quantum mechanical systems. The 
number of papers which deal with the zeta function method is increasing rapidly. Here 
we shall restrict ourselves to the last of the applications just mentioned. Also, the 
systems to which the methods studied in this paper can be applied will be only the 
special ones where all the eigenvalues of the Hamiltonian are known exactly. 

As described by Actor [ 11, the partition function for a quantum mechanical system 
with discrete energy levels E, > 0: 

m 
= Tr(e-pH) = c e-PEti 

n=O 

has a high-temperature expansion in terms of the zeta function of H: 

m 
lH(s)=  E,”. 

n = O  

In the cases generally considered, the series (1.2) is bound to converge absolutely for 
Re(s) > c > 0 and the zeta function is used in order to analytically continue the series 
on the RHS of (1.2) to all values of s by a meromorphic function. 
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In the simplest case when H corresponds to a harmonic oscillator, the energy levels 
are E, = ( n  + a ) w ,  and one has 

&(s)  = C ( n  + a)- 'w- ' .  (1.3) 
n=O 

For N non-interacting oscillators the Hamiltonian zeta function (1.2) is 

m 

& ( S )  = C ( n l w l +  * . . + n#, + a)-s.  
n , ,  .,n,=O 

( 1.4) 

These are the more immediate cases. However, during the last few years the study of 
quantum field theories on partially compactified spacetime manifolds has become 
important in various domains of quantum physics, such as in the study of dimensional 
reduction and spontaneous compactification, in the study of quantum field theory in 
the presence of boundaries (the celebrated Casimir effect) and, in general, in the study 
of quantum field theory on curved spacetime (manifolds with curvature and non-trivial 
topology), a step towards quantum gravity. 

There are many interesting calculations of effective potentials which can be done 
exactly and in a very elegant way by using the zeta function method. The usual 
compactifications studied are the toroidal (spacetime [w" x T N )  and the spherical 
(spacetime R" x S N ) ,  an important reason for it being that of mathematical simplicity. 
Noting, however, precludes the possibility of having to consider other campactification 
manifolds, as string theories seem to indicate. In the case of toroidal compactification 
one has to deal with expressions of the form (1.4) but quadratic in the n, .  For instance, 
the zeta function for the vacuum scalar loop on R" x T N  is of the form [ l ]  

a, 

~ N ( s )  = A ( s )  [(aln1 - b1)'+. . . + ( ~ , i n N  - bN)'+ c*]-~+"'. (1.5) 
n , ,  , n h = - x  

This zeta function is very difficult to evaluate. In the particular case a, = . . . = a N ,  
c = 0, and b, = . , . = bN = 0 or 4, it is an Epstein zeta function which, in some cases, 
can be expressed in terms of Riemann zeta functions. More general cases (in particular, 
when the a, are not equal or when c is non-zero) have not been treated because of 
the great difficulty in evaluating the zeta function. 

In the cases of manifolds with non-toroidal compactification the expression of the 
zeta function is even more involved [ 11. So, in the case of spherical compactification, 
which has also been extensively considered, one has to deal with polynomials in the 
n, (with different values for the a, if the N-sphere turns into an ellipsoid). 

As remarked by Actor [ l ,  21, a basic issue in the zeta function regularisation 
programme is the evaluation of the above-mentioned types of zeta functions involving 
multiple summation indices-and depending on several parameters-in terms of the 
most simple zeta functions available. These are the Riemann zeta function: 

X 

( (s )=  c n-' 
n = l  

and the Hurwitz (or generalised Riemann) zeta function: 
X 

l ( s , a ) =  (n+a) - ' .  
n =O 
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In [ 1,2] the binomial expansion has been repeatedly used in order to perform such 
evaluations. In particular, the following expressions have been obtained: 

00 

C (m+bn)-s  
m,n = 1 

- f ( i s ) ( b  - l)”(b-s-“ - l ) l ( - n ) l ( s +  n )  
n = l  

valid for 0 < b < 2 (with a corresponding expression being valid for < b <+a), and 
m 

( m  + n + c)-’ = l(s- 1, c)  - ( I  + c ) l ( s ,  c ) +  c-’. (1.9) 
m , n = l  

Actually, this last expression (1.9) had been previously derived in [3] by employing a 
quite different procedure, which makes use of an integral representation of the gen- 
eralised Riemann (or Hurwitz) zeta function. 

Making repeated use of the binomial expansion and also employing the Euler- 
Maclaurin formula, the preceding results (1.8) and (1.9) can be easily extended to the 
evaluation of multiple-sum zeta functions of the form 

m 

(a lnl+.  . . + a N n N + a ) - ” f n , ) .  
n I  ,.... nh. =O 

(1.10) 

However, the expressions that one obtains in this way are rather lengthy. In  P 2 we 
shall provide alternative formulae for these multiple-sum zeta functions. 

Although expression (1.10) is indeed the general form zeta function characteristic 
of multiple harmonic oscillators, it turns out, however (as has been discussed before), 
that physical problems formulated in partially compactified spacetimes involve series 
of the kind 

(1.11) 

and 
m 

(a lnf f l+ .  . .+aNn:+a)-”fni). (1.12) 
n l . . , . , n w = O  

These series may be viewed as types of generalisations of the Epstein zeta function. 
As remarked by Actor [I], the only use one can make of the binomial theorem in this 
case is to express (1.11) and (1.12) in terms of series of the form 

2 n y ( n a  + mp)-s. (1.13) 

But here neither of the two terms is guaranteed larger than the other and the binomial 
theorem cannot be used anymore in order to separately evaluate the sums in (1.13) in 
terms of Riemann zeta functions. This will be resolved in 0 3. 

n , m = l  

2. Zeta functions for non-interacting oscillators 

An alternative to the binomial procedure is to make use of our original method [3], 
which had already led us to (1.9) (in a much simpler case). Let us consider in this 
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section the case of a system of N non-interacting harmonic oscillators. The eigenvalues 
of the Hamiltonian are 

ainI+.  . . + a N n N + a  n i E N  (2.1) 

where the constants ai>O are the frequencies w i  in (1.4). From now on we shall 
employ this more abstract notation, in line with (1.10)-(1.12). The partition function 
is 

Z( t )  = Tr(e-IH) 

= exp[-t(a,n,+. . . + a N n N ) l  
n 1  ,... ,nN  = O  

N n (1 - e-'.' -1 J )  ' 
= e-at 

j = 1  

By making use of the Mellin transform, the zeta function can be written as 
m 

~ H ( s ) =  ( u , T I ~ + . . . + ~ N ~ N + ~ ) - ~  
n 1  ,..., n,y =o 

for Re(s)> N and O<a < 1. We shall now develop two different procedures for 
evaluating the zeta function (2.3). 

bj = aj/ U N  j = 1,2, .  . . , N - 1 b = a / a N  (2.5) 

after substitution of (2.5) into (2.3) and integration, we obtain the following expression: 
N - 1  

l H ( s ) = a i s ( l ( s ,  b ) +  l ( % b + b k ) +  l ( & b + b k + b h ) + * . *  
k = l  I s k s h s N - 1  
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This formal procedure can be rigorously justified as is easily seen from the expression 
of the remainder (2.7). In fact, let us show that for Re (s) > 2( N - 1 )  we have that 
Rp 4 0 as p + W. Choose E such that 0 < E < 1 and divide R p ( s )  into two parts, RF’(s)  
and Rf’( s), corresponding to 5,“ = 1; + 5:. We have 

P- tW Re( s)  > 2( N - 1 ) .  

Moreover 

+ O  P+W Re(s)> N - 2 .  (2.9) = ~ ( 1  -e-e)-NP-s+N-2 

The series obtained by substitution of (2.4) into (2.3) is absolutely convergent for 
Re(s) > 2 ( N  - 1 )  and its analytic continuation is thus given by (2.6) for any value of 
s (R,(s) being understood as the corresponding analytic continuation of (2.7)). 

Summing up, the multidimensional zeta function (2.1) can be written in terms of 
Hurwitz zeta functions as follows: 

This expression involves an analytic continuation on the variable s. That is, even 
though the integral representation (2.3) was valid only for Re s > N, (2.10) is valid for 
any value of s. 

In the particular case a ,  = . . . = a N ,  we obtain 

00 

1 [ a , ( n ,  +. . . + n N ) +  a]-’ = ays 
n ,  , . . . ,nN =o p = o  

which, for N = 2, can be written as 

(2.11) 

(2.12) 
m,n=O 

thus recovering expression (1.9) (see [3]). 
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2.2. Second procedure 

Though very simple and convenient for the treatment of the zeta function (1.4), an 
important shortcoming of the preceding procedure is its lack of flexibility, namely it 
cannot be generalised in a natural way in order to treat the cases given by (1.10)-(1.12). 

Let us begin by deriving a second expression for the zeta function (1.4) and by 
extending it then to the case of (1.10). The zeta functions ( 1 . 1 1 )  and (1.12) will be 
dealt with by this second method in the next section. 

Turning back to (2.3), we shall now interchange the summations over the nj and 
k, being the last of the series expansions of the exponentials in (2.3). On doing this, 
additional terms appear, as has already been proved in the literature (see, for instance, 
[4]). It is not difficult to provide a direct derivation of the additional terms which 
appear in our case (2.3). Either by this direct calculation or as a special case of the 
lemma of the next section, we have that if 

(2.13) 

then 

S 1 ( t ) = S 1 ( t ) + l / t  (2.14) 

which coincides with the result obtained in [4] with the help of the Cauchy formula. 
Now, by performing the series expansion in (2.3) step by step and by interchanging 

at each step the order of summation using (2.14), we obtain the following explicit 
formula (with bj = a j / a N ,  j = 1 , .  . . , N - 1,  b = a / a N ) :  

xr(s+$, k j , + p + l - N  (2.15) 

where 1 S j ,  < . . . < j p  S N - 1 ,  and where X C N - , , p  means sum over all such selection of 
p numbers. In all, there are 2N-' terms, and each of them is a multiseries involving 
the well known Riemann and Hurwitz zeta functions. 

The proof that the series one obtains from (2.3) (before analytic continuation) by 
this second procedure is absolutely convergent is very similar to the one developed 
before ((2.8) and (2.9)). By estimating the remainder of the series (which, for a product 
of exponentials, is also of exponential type) and by integrating it in t one shows, as 
before, that for Re($) > 2 N  the series is absolutely convergent. However, the conver- 
gence of the series of analytic continuations is not that immediate in this case. Practical 
applications of formula (2.15) (in particular to the direct calculation of Casimir energy 
densities by direct summation over the zero modes) have shown that it is, in fact, 
convergent in some cases while in others it is only asymptotic. In these latter cases, 
taking a finite number of terms ( f  10) we have obtained a very good numerical accuracy 
(=lo-'  in relative magnitude) and a remarkable stability of the asymptotic series [ 5 ] .  

This second procedure is immediately generalisable to the expression (1.10) with 
f ( n i )  a polynomial in the ni (these are actually the cases which come out in practice 



Multiple zeta functions with arbitrary exponents 

[ l ,  21). In fact, let us write 

937 

(2.16) 

Then the result is very similar to (2.15): 

Notice, moreover, that the other, more simple, equation (2.9) obtained by the first 
procedure cannot be generalised to this case where f (  ni )  # 1. Concerning the conver- 
gence of the series (2.17) before and after analytic continuation, the same considerations 
as above apply here. 

3. Zeta functions with arbitrary exponents 

Let us first recall the toroidal zeta functions, which were studied by Epstein [6,7]. In 
the notation of Actor [8], they are 

a3 

z N ( s ) =  2‘ ( n : + .  . . + n L ) - S  
n1 ,..., n v  =-a3 

a3 

Y N ( s ) =  [ ( n , + t ) 2 + .  . . + ( n N + f ) 2 ] - s  
n r  ,...,n,v=-OO 

(3.1) 

(3.2) 

where the prime means that the term n ,  = . . . = nN = 0 is to be omitted in the series (3.1). 
Before we attack the general multiple series (1.11) and (1.12), let us concentrate 

on the case 

m 

M 2 ( s ;  a, b ;  a, p )  = (anoi + bmP)-”  a, b > 0. (3.3) 
n , m = l  

The strategy will be, once more, to make use of the Mellin transform in the zeta 
function [3]. We get in the present case 

m = ~  J o  J 

where the second term is the additional term which appears on interchanging the order 
of summation, i.e. 

Soi(t) = S a ( f ) + f o i ( t )  (3.5) 
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m 

S , ( t ) =  1 exp(-net) 
n=1 

The following lemma generalises a result due to Weldon [4]. 

Lemma. The difference fa ( t )  between these two series is given by 

where (i) for -W < (Y < 2 one has 

A , ( t ) = O  

(ii) for (Y = 2, it is 

Az( t )  = -( :) li2s,( :) 

(3.6) 

(3.8) 

(3.9) 

and (iii) in general, for any value of a 2 2 ,  A,( t )  is a small contribution as compared 
with the main term in f,(t), (3.7) (for instance, A2(1) < 

fioc$ It makes use of complex integration and follows the same steps as in [4]. 
Consider the function 

(3.10) 

The series Sa( 1 )  above is to be interpreted as the analytic continuation of Sa( 2, s) to 
s = - 1 .  Now, notice that S,  ( t ,  s) converges for Re(s) > 0 large enough. We can write 

(3.11) 

where contour C consists of the straight line Re( k )  = ko, with ko fixed, 0 < ko < 1, and 
of the semicircumference at infinity on the left of this line. Going through the same 
steps as in the paper by Weldon [4] we end up with 

where A, ( t ,  s)  is the contribution of the curved part C1 of the contour C: 

c(s + 1 + ak)r(k)zk.  (3.13) 

For a <2,  it can be seen that this integral vanishes as the radius of the contour tends 
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to infinity. In contrast, for a = 2,  using the standard reflection formula 

we obtain 

A2(t)  = A2(f, s = -1) = (:)'lis($). 

(3.14) 

(3.15) 

This contradicts the affirmation of Weldon that his formula was valid for any a EN 
[4]. In fact, Actor had already noticed that this claim of Weldon was wrong but had 
not managed to obtain the missing term [SI. 

Finally, for large a, we find 

(3.16) 

Thus, interpreting S a ( ? )  (and S a ( t ) )  as the analytic continuation of Sa(? ,  s)  (and of 
the corresponding expression with summations interchanged) to s = -1, we have proved 
the lemma. 

These formulae (3.5) and (3.7) can be viewed as the prescription for zeta function 
regularisation to be applied to expressions like (1.11) and (1.12). In words the 
prescription is: (i) use the integral representation in terms of the gamma function, (ii) 
expand the exponentials in the integrand, (iii) change the order of summation step by 
step, (iv) zeta-regularise the new series, and (v) add a term r ( a ) / ( a t " a ) + A e ( t )  
(remember that A is a small contribution) in the integrand at each step, which 
contributes to the following steps. Equation (3.4) gives finally 

(3.17) 

having neglected the A term. 

simultaneously interchanged, i.e. 
Of course, the roles of a and b and of a and p in this expression can be 

M2(s; b, a ;  P, a )  = M 2 b ;  a, b ;  a, P ) .  (3.18) 

Equation (3.17) is the desired expression which gives the zeta function with arbitrary 
exponents (3 .3)  in terms of a series of ordinary Riemann zeta functions. It is to be 
compared with (1.8),  which it very much resembles. 

Let us now turn to the case 

m 

M ; ( s ;  a, b ;  a, P )  = C (an" + bmP + c)-' a, b, c > 0. (3.19) 
n,m=l 

By making use again of the integral representation of the zeta function [3] and of the 
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preceding manipulations, we obtain 

(3.20) 

Let us now develop in detail the three-dimensional case. With two successive 
applications of the procedure, one gets 

m 

( a ,  n H I +  a2n;2+ a3 n:3)-s 

n l , n ~ , n 3 = 1  

x Jom dt  exp[-t(b,n;z+ b , @ ) ]  

where b j = a j / a 3 ,  j = l , 2 .  
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In the general case, for the expressions ( 1 . 1 1 )  and (1.12) with f ( r r i )  = 1, we obtain 
the explicit formulae 

M ( s ;  a , ,  . . . , a N ;  a1, . . . , L Y N )  

(3.22) 

N - p - l  (-1) N - p - l  

I = 1  n [ ~ ( ~ ) k " i ~ - ~ , l k , l ) ] 5 ( ~ N ( s +  f = 1  kjl- 1 - 

. .  with l s i l <  . . .  < i p < N - l ,  l s j l < . . . < j N - p - l ~ N - l ,  being il ,..., zp, j l  ,..., 
j N - p - ,  a permutation of 1 ,2 ,  . . . , N - 1 .  The sum on C N - l , p  means sum over the ("L') 
choices of the i, ,  . . . , ip among 1 , .  . . , N -  1 .  

As in the case considered in § 2 ((2.15) and (2.17)), it is here also immediate to 
obtain the formula corresponding to (1.11) with f ( n i )  of polynomial type (2.16). 
Moreover, the discussion on the convergence of (2.15) before and after analytic 
continuation can be transported here in the same terms: the series (3.22) is proven to 
be absolutely convergent, before analytic continuation, for a value of s with Re(s) > 0 
large enough. However, after analytically continuing in s, the series (3.22) is, in general, 
only asymptotic. As for the applications of these formulae for general ai we refer the 
reader back to 0 1 .  

Let us finally consider expressions of the following type, which give a result similar 
to (3.22): 

M ' ( s ;  a , ,  . . . , a N ;  a l , .  . . , a N )  

/ N-U-1  D 1 \  

(3.23) 

With a little more effort we can also calculate (1.12) (withf(ni) = 1, in the polynomial 
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case, the result is very similar): 

"(si a,,  . . . 9 U N ;  ( Y 1 , .  . . , (YN) 

(3.24) 

where, as customary, the 'hat' over a variable indicates its absence. 
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